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Abstract In order to construct a saturated genetic map
and facilitate marker-assisted selection (MAS) breeding,
it is necessary to enhance the current reservoir of known
molecular markers in Gossypium. Microsatellites or sim-
ple sequence repeats (SSRs) occur in expressed sequence
tags (EST) in plants (Kantety et al., Plant Mol Biol
48:501-510,2002). Many ESTs are publicly available now
and represent a good tool in developing EST-SSRs. From
13,505 ESTs developed from our two cotton fiber/ovule
cDNA libraries constructed for Upland cotton, 966
(7.15%) contained one or more SSRs and from them, 489
EST-SSR primer pairs were developed. Among the EST-
SSRs, 59.1% are trinucleotides, followed by dinucleotides
(30%), tetranucleotides (6.4%), pentanucleotides (1.8%),
and hexanucleotides (2.7%). AT/TA (18.4%) is the most
frequent repeat, followed by CTT/GAA (5.3%), AG/TC
(5.1%), AGA/TCT (4.9%), AGT/TCA (4.5%), and
AAG/TTC (4.5%). One hundred and thirty EST-SSR loci
were produced from 114 informative EST-SSR primer
pairs, which generated polymorphism between our two
mapping parents. Of these, 123 were integrated on our
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allotetraploid cotton genetic map, based on the cross
[(TM-1xHai7124)TM-1]. EST-SSR markers were dis-
tributed over 20 chromosomes and 6 linkage groups in the
map. These EST-SSR markers can be used in genetic
mapping, identification of quantitative trait loci (QTLs),
and comparative genomics studies of cotton.

Abbreviations EST: Expression sequence tag - PCR:
Polymerase chain reaction - dpa: Day post-anthesis
bp: Base pair - SSR: Simple sequence repeats

Introduction

Cotton (Gossypium spp.) is an important cash crop and
the second largest source of textile fiber and edible oil
throughout the world. In recent years, improvement in
the quality of cotton fiber has been extremely important
because of changes in spinning technology (Shen et al.
2005). With advancements in molecular marker tech-
nology, marker-assisted selection (MAS) combined with
conventional breeding has been one way in which fiber
quality can be improved. To increase the reliability and
usability of MAS breeding, there is a need to develop
more polymorphic molecular markers. As the cotton
genome is relatively large, with a 1C content of
2,230 Mbp (Arumuganathan and Earle 1991), approxi-
mately 5,000 markers are needed to effectively under-
stand and quantitatively interpret the cotton genome
(Lacape et al. 2003). To date, many types of DNA
markers, including restriction fragment length poly-
morphisms (RFLP), random amplified polymorphic
DNAs (RAPD), amplified fragment length polymor-
phisms (AFLP), simple sequence repeats (SSR) and se-
quence-tagged sites (STS) have been developed for
cotton research (Reinisch et al. 1994; Jiang et al. 1998,
2000; Shappley et al. 1998; Ulloa and Meredith 2000;
Reddy et al. 2001; Ulloa et al. 2002; Zhang et al. 2002;
Lacape et al. 2003; Mei et al. 2004; Nguyen et al. 2004;
Rong et al. 2004). However, to construct a saturated



genetic map that would expedite genetic improvement in
cotton, new sources of molecular markers are needed.

SSRs or microsatellites are tandemly repeated DNA
motifs (1-6 bp long) which may vary in the number of
repeats at a given locus. SSRs are easy to use and ana-
lyze (Morgante and Olivieri 1993). Recent studies have
revealed that gene transcripts can also contain repeat
motifs, and the abundance of expressed sequence tags
(ESTs) makes this an attractive potential source of mi-
crosatellite markers (Kantety et al. 2002). EST-SSRs
have been identified for many crops, including Triticum
aestivum L. (Gupta et al. 2003; Gao et al. 2004; Nicot
et al. 2004), Medicago truncatula (Eujayl et al. 2004) and
Vitis vinifera (Decroocq et al. 2003). EST-SSRs have
also been developed for Gossypium (Saha et al. 2003;
Han et al. 2004; Qureshi et al. 2004).

Qureshi et al. (2004) reported that out of 9,948 ESTs
belonging to Gossypium hirsutum, 84 primer pairs were
designed for amplification of EST-SSR markers, and
these primer pairs were tested to detect polymorphism
among three lines of G. hirsutum and one line of G.
barbadense. Their study showed 26% intraspecies poly-
morphism among G. hirsutum cotton cultivars and 52%
interspecies polymorphism between G. hirsutum and
G. barbadense. We have developed 544 G. arboreum
derived SSR primer pairs from publicly available
EST sequences; 99 of them were mapped in our inter-
specific BC; mapping population from cross [(TM-
1xHai7124)xTM-1] (Han et al. 2004). These G. arboreum
derived SSR data are publicly available in two websites
(http://algodon.tamu.edu/~mapbase/SSR-frame-page.htm
and http://www.mainlab.clemson.edu/cmd/projects/nau).

In the present study, we developed 489 G. hirsutum
derived EST-SSRs. Their sequence characteristics and
putative functions of their predicted products were re-
ported. Based on the polymorphism surveyed in inter-
specific cotton mapping parents, G. hirsutum cv. TM-1
and G. barbadense cv. Hai7124, 123 EST-SSR markers
were integrated into our backbone genetic map in tet-
raploid cotton.

Materials and methods
EST sequencing and EST-SSR identification

A cDNA library was constructed from 5 to 25 day post-
anthesis (dpa), developing fiber cells of the Upland
cotton germplasm ‘7235, at Nanjing Agricultural
University (NAU) in China. This introgression germ-
plasm line was developed by crossing G. anomalum and
G. hirsutum, then backcrossing to cultivars and strains
with high fiber strength such as Acala 3080 and PD4381
(Qian et al. 1992). It is characterized by the properties of
its very high quality fiber (Zhang et al. 2003). Another
cDNA library was constructed with the 0-5 dpa ovules
and 3-22 dpa fibers from G. hirsutum cv. Xuzhou 142, at
the Institute of Plant Physiology and Ecology, Shanghai,
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China. Random sequencing of 5,767 ESTs at the 5’-end
from the ““7235” library and 7,738 ESTs at the 3’-end
from Xuzhou 142 was conducted in Bioasia Biotech,
Shanghai, China. The simple sequence repeat identifi-
cation tool (SSRIT) (http://www.gramene.org/db/sear-
ches/ssrtool) was used to identify SSRs from these
cotton ESTs.

The EST-SSRs were found to contain motifs of 26
nucleotides in size. The minimum repeat unit was de-
fined as five for dinucleotides and four for the higher
order motifs including tri-, tetra-, penta-, and hexanu-
cleotides. The EST-derived SSR markers in this work
were designated using “NAU” (Nanjing Agricultural
University) as a short prefix (Han et al. 2004).

Development of EST-SSR primer pairs

The software program, Primer3 (http://frodo.wi.mit.
edu/cgi-bin/primer3/primer3_www.cgi), was utilized to
design primer pairs flanking SSRs. The major parame-
ters for primer design were set as follows: primer length
18-24 bp with 20 bp as the optimum; PCR product size
100-300 bp; optimum annealing temperature 57°C; GC
content 35-60% with 50% as the optimum. The primers
were synthesized by Bioasia Biotech, Shanghai, China.

DNA extraction, PCR amplification,
and electrophoresis

Cotton genomic DNA was isolated from young leaves as
described by Paterson et al. (1993). PCR amplifications
on a Peltier Thermal Cycler (MJ Research) and product
electrophoresis were performed as previously described
(Zhang et al. 2000, 2002).

Linkage mapping

The mapping population was comprised of 140 BC,
individuals which were generated from the cross [(TM-
1xHai7124)xTM-1] (Song et al. 2005). TM-1 was
developed as a genetic standard accession of G. hirsutum
in the United States (Kohel et al. 2001), whereas
Hai7124, developed in China, is a commercial Verticil-
lium-resistant cultivar of G. barbadense. Based on this
backcross population, a backbone genetic map including
482 loci was constructed in allotetraploid cotton using
SSR markers and two morphology markers (Song et al.
2005). Additional SSR and sequence-related amplified
polymorphism (SRAP) markers have subsequently been
integrated into this map (Han et al. 2004; Song et al.,
unpublished data). SSR primers were obtained from
DNA sequences from the following sources: BNL
primers from Research Genetics Co. (Huntsville, AL,
USA, http://www.resgen.com); JESPR from Reddy
et al. (2001); TM from Dr John Yu, USDA-ARS, Crops
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Germplasm Research Unit, Texas, USA; EST from Dr
S. Saha, USDA-ARS, Crop Science Research Labora-
tory, Mississippi, USA; and CIR from Nguyen et al.
(2004). These primers can be downloaded at http://
www.mainlab.clemson.edu/cmd/projects.

Linkage groups were assigned to the subgenomes and
chromosomes based on our backbone linkage maps
(Zhang et al. 2002; Song et al. 2005) and published maps
(Lacape et al. 2003; Rong et al. 2004) after aligning
groups with common SSR loci.

The EST-SSR primer combinations (489 in total)
were employed to screen interspecific polymorphisms
between TM-1 and Hai7124. When an SSR was found to
be polymorphic between TM-1 and Hai7124, it was used
to survey 140 individuals of the BC; mapping popula-
tion. The maternal (TM-1) genotype and the heterozy-
gous F; genotype of the BC; population were scored as 1
and 3, respectively. Missing data were designated zero
0).

MapMaker version 3.0b (Lander et al. 1987) was
employed to construct the linkage map. First, for all
with “‘error detection on”, the command ‘“Group”
(LOD 8, recombination fraction 30 cM) was used to
identify all the markers. Then the commands “Try”
and “Map” were used. Marker order was confirmed
with the “Ripple” command. Recombination fre-
quencies were converted into map distances (centi-
Morgans) using the Kosambi mapping function
(Kosambi 1944).

Putative function analysis

Using BLASTX algorithms, 489 ESTs containing
microsatellites were used to search the GenBank
nonredundant database; the E-value threshold was set
to <1077 (http://www.ncbi.nlm.nih.gov/BLAST). They
were then allocated to the corresponding functional
categories by referring to the SRB embryonic EST pro-
ject (http://www.mcdb.ucla.edu/Research/Goldberg).

Results

Characteristics of EST-SSR derived
from the tetraploid cotton

A total of 13,505 ESTs of Gossypium fiber cells and
ovules were employed in this investigation to develop
SSR markers. These ESTs were generated from two
cultivars and lines: germplasm 7235 (5,767 ESTs) and
Xuzhou 142 (7,738 ESTs) in G. hirsutum. We detected
966 ESTs, 223 from the 7235 and 743 from Xuzhou
142, which contain one to several SSRs. Based on DNA
sequences, 489 EST-SSR primer pairs were developed.
Among them, 61 ESTs (12.5%) contain two or three
adjacent repeats. The primer sequence, GenBank acces-
sion number, repeat motif and number, polymorphism
detected between TM-1 and Hai7124 and putative

function (BlastX) for these 489 EST-SSR primer pairs
were presented in our Electronic Supplementary Mate-
rial. Other EST sequences were unsuitable for designing
PCR primers. Among these 489 EST-SSR primer pairs,
the most common repeat types were trinucleotides
(59.1%), followed by dinucleotides (30%), tetranucleo-
tides (6.4%), hexanucleotides (2.7%), and pentanucleo-
tides (1.8%) (Fig. 1). The motif AT/TA had the highest
frequency of 18.4% followed by the motifs CTT/GAA
(5.3%), AG/TC (5.1%), AGA/TCT (4.9%), AGT/TCA
(4.5%), and AAG/TTC (4.5%) (Fig. 2).

Genetic mapping of EST-SSRs

Among the 489 EST-SSR primer pairs developed in this
study, 114 (23.3%) were informative when used to
screen TM-1 and Hai7124, the parents of our interspe-
cific BC; mapping population (Song et al. 2005). Only
two primer pairs (NAU2000 and NAU2040) from 489
markers amplified unexpected fragment sizes. Alto-
gether, 114 primer pairs amplified 130 loci in allotetra-
ploid cotton. Of these, a total of 123 microsatellite loci,
including 9 deviated loci (7%), were integrated into our
backbone genetic map. They were anchored on all 20
chromosomes and 6 linkage groups (Figs. 3, 4). Out of
these 123 EST-SSR markers, 62 were assigned to the At
subgenome and 61 to the Dt subgenome in the allote-
traploid cotton. But 72 loci were anchored to the At and
37 to the Dt subgenome of allotetraploid cotton based
on linkage tests in our mapping EST-SSR markers de-
rived from the diploid G. arboreum (Han et al. 2004). If
we include all new integrated loci, our genetic map now
consists of 907 loci and 5,060 cM, with an average be-
tween-loci distance of 5.6 cM.

To date, 13 homeologous pairs have been identified
(Endrizzi et al. 1985; Crane et al. 1994; Reinisch et al.
1994; Lacape et al. 2003; Rong et al. 2004). Seven of 10
duplicated loci surveyed by G. arboreum derived EST-
SSRs were mapped on their corresponding homeologous
chromosomes or linkage groups (Han et al. 2004).
In this study, 18 EST-SSR markers generated by 8 pri-
mer pairs were also found to be distributed on their
corresponding homeologous chromosomes or linkage
groups: NAU2016-250 in LGA03 and NAU2016-200 in
LGDO02; NAU2170-250 in Chr. 12 and NAU2170-230 in
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Fig. 1 Distribution of EST-derived simple sequence repeats (SSRs)
based on motif size
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Fig. 3 Distribution of EST-derived SSRs based on motif sequence type on the chromosomes and/or linkage groups

Chr. 26; NAU2186-300 and NAU2186-360 in Chr. 7 and
NAU2186-150 in Chr. 16; NAU2238-120 in Chr. 6 and
NAU2238-150 in Chr. 25; NAU2274-110 in Chr. 5
and NAU2274-105 in LGDO08; NAU2363-170 in Chr. 4
and NAU2363-175 in Chr. 22; NAU2432-320 and
NAU2432-460 in Chr. 7 and NAU2432-170 in Chr. 16;
and NAU2477-200 in Chr. 4 and NAU2477-205 in Chr.
22 (Fig. 4).

Putative functions of the products of ESTs containing
SSR

To explore the potential utility of the EST-SSR markers
for use in research of the cotton structural genome, the
489 EST-SSRs were compared to those in the GenBank
database using BLASTX with an E-value <1077, In
reference to the SRB embryonic EST project (http://
www.mecdb.ucla.edu/Research/Goldberg), putative
functions of these ESTs were classified into 14 main
categories: transcription and post-transcription (4.1%),
protein destination and storage (3.1%), metabolism
(5.3%), protein synthesis (3.7%), signal transduction
(1.6%), energy (1.6%), intracellular trafficking (1.2%),
transport (0.8%), cell structure (5.1%), disease and de-
fense (1.8%), cell growth and division (0.6%), second-
ary metabolism (0.2%), uncategorized (29.4%), and
unknown function (42.3%). Some important functional

genes were identified, including acyl-coenzyme A-bind-
ing protein, adenylate kinase, and anthocyanidin
reductase (Ji et al. 2003; Arpat et al. 2004). Information
of their GenBank accession numbers, primer number,
sequence, motif and the repeats, and putative functions
are available in the Electronic Supplementary Material.

Discussion

Many microsatellite markers (SSR) have been developed
in Gossypium (Connell et al. 1998; Reddy et al. 2001;
Kumpatla et al. 2002; Saha et al. 2003; Nguyen et al.
2004; Han et al. 2004). These markers were generated
from cotton genomic or EST sequences and most have
been used successfully in the construction of genetic map
and molecular tagging.

Saha et al. (2003) identified 34% EST-SSR sequences
in G. hirsutum containing trinucleotide repeat motifs.
Our previous investigation indicated that hexanucleotide
motifs were the most frequent (40.1%) in the 544 EST-
SSRs from 931 ESTs of G. arboreum (Han et al. 2004). In
the present study, 489 EST-SSR primer pairs were
developed from two cotton cDNA libraries in G. hirsu-
tum. Among 550 SSRs in these ESTs, 59.1% also contain
trinucleotides. Using the end-sequencing data of BAC/
BIBAC clones (http://algodon.tamu.edu/~mapbase/
SSR-frame-page.htm), 265 repeat motifs were detected,
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Fig. 4 New genetic map constructed using a BC; population
obtained from the interspecific cross: G. hirsutum L. cv. TM-1 x G.
barbadense L. cv. Hai7124. Chromosomes and linkage groups are
arranged by 13 homeologous pairs. Positions of loci are given in
centiMorgans (Kosambi 1944). Fragment sizes (in base pair) are

including 213 (80%) dinucleotides, 49 (18.5%) trinucle-
otides, 1 tetranucleotide, 1 pentanucleotide, and 1 hex-
anucleotide. Thereafter, they developed 192 genome SSR
primers in Upland cotton. The differences in Upland
cotton repeat motif type detected in various studies may

given next to the maker name. EST-SSR markers developed in this
study are indicated in bold italics. Deviated loci are underlined.
Homeologous loci identified in this study were connected by a solid
bar. Homeologous loci identified before were connected with a
broken line

be partially due to different materials or analyzing
methods employed. Additionally, Reddy et al. (2001)
found the most frequently occurring microsatellite motif
in G. hirsutum genome was AAG, which constituted 32%
percent of all 10 possible types of di- to hexanucleotide
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repeats. Saha et al. (2003) reported the GA/CT motif was
the most abundant (24%) from 133 EST-SSRs of 9,447
ESTs in G. hirsutum, while the AAG/TTC repeat was the
most common (18%) in 348 EST-SSRs from 26,630
ESTs of G. arboreum. Our study showed that AT/TA
was the most frequent repeat followed by CTT/GAA,
AG/TC, and AGA/TCT. All of these molecular markers
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are based on a small fraction of cotton genome infor-
mation, which may account for SSR markers developed
for amplified short products (see Electronic Supplemen-
tary Material). Further investigation of the interspecies
variability in repeat motif frequency between G. hirsutum
and G. arboreum might shed light onto the evolutionary
events of the At and Dt subgenomes in tetraploid cotton.
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Several investigations have suggested that there is
a higher frequency of SSR polymorphisms within
G. hirsutum and/or between Gossypium species (Reddy
et al. 2001; Qureshi et al. 2004; Nguyen et al. 2004).
Qureshi et al. (2004) detected 26% polymorphism
for EST-SSRs within G. hirsutum and 52% between
G. hirsutum and G. barbadense among 84 EST-SSR
primer pairs. Reddy et al. (2001) observed 21% poly-
morphism within G. hirsutum and 49% polymorphism
between G. hirsutum and G. barbadense for SSR markers
derived from genomic DNA. Similarly, Nguyen et al.
(2004) showed 56% polymorphism between G. hirsutum
and G. barbadense. In this study, we identified a 23%
polymorphic rate between TM-1 and Hai7124,
and TM-1 and 3-79. This is roughly the same as
found in our previous study in which 99 (18.2%) of 544

G. arboreum derived EST-SSRs were polymorphic and
segregated in the interspecific BC; mapping population
[(TM-1xHai7124)xTM-1] (Han et al. 2004). The dis-
crepancy in polymorphic rates may be due to different
plant materials, different number of ESTs from the dif-
ferent tissues or number of EST-SSR primers used.

It is interesting to note that of 111 G. arboreum
derived EST-SSR markers, 72 were anchored to the At
and 37 to the Dt subgenome of allotetraploid cotton,
a nearly 2:1 ratio (Han et al. 2004). In this study,
however, 62 and 61 EST-SSR markers developed from
G. hirsutum were mapped on the At and Dt subge-
nomes, respectively, essentially a 1:1 ratio. EST-SSR
markers, developed from cotton-developing fiber and
ovule cells which are mapped on the D-subgenome,
revealed that there are some important genes for fiber
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development in the D-genome chromosome. This may
partially explain why quantitative trait loci (QTLs) for
fiber-related traits were mapped in Dt genome chro-
mosomes in tetraploid cotton, even though D-genome
species do not produce spinnable fibers (Jiang et al.
1998; Kohel et al. 2001; Nguyen et al. 2004; Mei et al.
2004). These results suggest there are complex evo-
lutionary relationships between A, At, D, and Dt
genomes.

To date, very few cotton genes have been identified
experimentally, thus making bioinformatics analysis of
ESTs, generated from various cDNA libraries, a valu-
able method of functional classification. Using the sub-
tractive PCR of cDNA prepared from 10 dpa wild-type
cotton fiber as tester and cDNA from a fuzzless-lintless
mutant as driver, 280 independent cDNA fragments and
172 genes were significantly upregulated in elongating
cotton fibers as confirmed by in situ hybridization in
representative cases by cDNA macroarrays (Ji et al.
2003). Arpat et al. (2004) identified more than 2,500
stage-specific “‘expansion-associated” genes that are
downregulated coincident with the termination of fiber
elongation and 81 novel genes newly identified that are
preferentially expressed during secondary cell wall syn-
thesis from comparison of 10 versus 24 dpa fiber tran-
scripts. In this study, BLASTX was employed to survey
the 489 SSR-containing ESTs, and some of these, with
apparently important functions, were mapped. This,
together with other ESTs or genes mapped, makes a
substantial contribution to our understanding of the
structure and function of the cotton genome, which can
lead to improvements in cotton production and quality.
EST-SSR mapping is one way to achieve a saturated
genetic map, which is invaluable not only to map genes
or QTLs for cotton yield, fiber quality, and disease
resistance, but also for integrating physical and genetic
maps.
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